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Today

e Topic: objective functions for recommender systems
e Two parts
e Part 1: technical challenges in moving beyond regression and
classification
e Part 2: ethical challenges, and philosophical tools for reasoning
about them
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Recap and Motivation
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Recap: Netflix Challenge

@ We can view collaborative filtering as a matrix completion
problem.

Rating matrix
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e In addition to the learning algorithm, it is important to consider

the data and the objective function.
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Recommender Systems
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@ Other kinds of recommendation systems include search engines
and social media feeds.

e What are some difficulties you’d run into if you tried to use a
Netflix-style algorithm to organize a user’s social media feed?
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Recommender Systems

e If you were designing an ML algorithm to organize a user’s social
media feed, what other information might you use?

@ As a supervised learning problem, what would be the inputs, and
what would be the targets?
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Challenge 1: Inferring User Preferences
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Challenge 1: Inferring User Preferences

o Google News was an early example of training a model to predict
clicks.

= Google News Q_ toronto computer science X -
® Topstories U of T computer science grads reflect on their studies — and the profs AR .
P— who inspired them & science

News@UofT - Jun 24 Toic
F Following ]

¢ Follow < Share

©) NewsShowcase
Q smessemcnes The 50-ear-old problem that eludes theoretical computer science 1Y

MIT Technology Review - Oct, 27 A ‘ J
® covow

News@UofT - Oct, 28

Canada Global research alliance between U of T and University of Melbourne to
o take strong relationship to another level
or

Your local news.

Trapping light in microchips: Professor wins top science award

Technology CTV News - Vesterday

™
®
9
B usiness
o]
]

Entertainment

o sports

artnerships
X, Healtn P P
Newsguo - 0ct 21

Language & region
Engiih (Canada)

Settings U of T researchers create mirror-image peptides that can neutralize
SARS-CoV-2

A science U of Treleases new guidelines for researchers engaging in international i R
Get the Androidapp &

GettheiOS app &

E3L-RSO 8/24



Challenge 1: Inferring User Preferences

@ Why are clicks a useful signal?

o What are some problems with optimizing for clicks?
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Challenge 1: Inferring User Preferences

o Here is a Bayesian network designed to model user behavior for a
search engine.

o We covered Bayes nets briefly when we discussed na 1ve Bayes.

@ Nodes represent random variables, and edges represent direct
influences. Shaded = observed.

e Want to infer user satisfaction (S).
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Chuklin et al., “Click models for web search”
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Challenge 1: Inferring User Preferences

o User preferences aren’t just a matter of reactions to individual
items, but also of the user’s overall experience.
e Many web services optimize for a criterion called engagement.
e User’s frequency, intensity, or depth of interaction with a product
over some time period
e Not a technical term, but a business term, instantiated in different
ways by different companies
o E.g. Gmail: percentage of active users who visited the site on 5 or
more days during the past Week Rodden et al., “Measuring the user experience
on a large scale”
e E.g. Facebook: time spent on site, meaningful social interactions

https://www.washingtonpost.com/technology/interactive/2021/how-facebook-algorithm-works/

e This is not directly optimized by an ML algorithm (as far as I
know), but is used to evaluate changes to the system.

e Sort of analogous to how logistic regression minimizes cross-entropy
loss but you might tune hyperparameters based on accuracy.
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Challenge 1: Inferring User Preferences

@ The choice of what to optimize for can have ethical implications.
@ The recently published Facebook Papers reveal a lot about
unintended consequences of algorithm design
e My aim isn’t to pick on Facebook here. They found these harms
and worked to fix them!
e Early years: optimizing for likes and clicks = clickbait

e Optimizing for time spent reading/watching = favored
professional over organic content

@ 2017: service changed to reward comments & emojis = most
successful political posts were the polarizing ones

e Some political parties consciously shifted their messaging to be
much more negative
e Facebook eventually rolled back this change for health and politics

@ https://www.wsj.com/articles/facebook-algorithm-change-zuckerberg-11631654215
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Challenge 2: Bandit Feedback
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Challenge 2: Bandit Feedback

@ You only get information about user preferences for the posts you
choose to show them. Therefore, the choices you make affect the
data you get.

e This is closely related to the multi-armed bandit problem.

@ You have a set of slot machine arms, and each arm ¢ pays off $1
with an unknown probability p;.

@ You are given T trials. You only find out the payoff for the arm
that you tried. You want to maximize your total expected payoff.

e Showing the user a post = pulling an arm. Your metric (e.g. likes,
clicks) = the payoff.
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— B3L-RSO

Challenge 2: Bandit Feedback

Here are the payoffs so far. Which arm should you pull next?

Am1: $ $ x $ x $ $ x $ §
Arm2: x x x x $ $ x x x

Arm3: x $
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Challenge 2: Bandit Feedback

e Bandit problems are an important example of an
exploration-exploitation tradeoff
o “Exploitation”: show the user a post you're confident they’ll like
e “Exploration”: show the user a post they may or may not like so
that you get information about their preferences
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Challenge 3: Evaluating Structured Outputs
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Challenge 3: Evaluating Structured Outputs

@ Most of this class has focused on classification, where there is a
natural metric to use (accuracy).

e In this case, we’d like to produce a feed (an ordered list of items).
Problems where we want to predict a structured object are known
as structured prediction.

e For now, assume that all items are either relevant or irrelevant.

@ Which of the following lists is preferable?

List A List B
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Challenge 3: Evaluating Structured Outputs

@ One basic measure is precision: the fraction of items which are
relevant.

e Which of the following lists is preferable?

List A List B
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Challenge 3: Evaluating Structured Outputs

@ Precision@K: Precision for the list up to the Kth item.
e Average Precision (AP): average of Precision@K, where K is taken
as the indices of the first NV relevant items.
e Moving a relevant item from position 2 to position 1 is worth more
points than moving it from position 8 to position 7.
e Mean Average Precision (MAP): mean of the AP over multiple
queries.

e Note: in different application areas, there are different (but
related) definitions of AP/MAP.
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Challenge 3: Evaluating Structured Outputs

An example of calculating AP with N = 3.

P@1 =1

P@3=1/3 P@3 =2/3
P@4 = 3/4

P@5 = 2/5

P@6 = 3/6

1/1 2 3 1 2 3
MAP =3 (3 +3+5) MAP = 3 (1+3+1)
~0.41 ~0.81
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Challenge 3: Evaluating Structured Outputs

What other factors might you consider in evaluating a list of
recommendations?
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Towards Ethics

o We've been discussing challenges that arise when defining
optimization objectives beyond the basic classification and
regression settings.

e So far, we’ve focused on challenges of building a useful and
engaging system.
e But what we choose to optimize for can have unintended

consequences. The rest of the lecture focuses on thinking about
optimization objectives from an ethical standpoint.
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